Episode 5: Is our future immortal? Science begins its ‘Fantastic Voyage’

Silicon chip could be replaced by material made in Cork


Silicon chips, like the one pictured here, could in future be made not from silicon, but from a new alloy material made by a UCC research group (Source: Wiki)

The silicon chip — the tiny synthetic “brain” inside smartphones, laptops and electronic devices — could eventually be replaced by a material made in Cork.The substance, a mixture of tin and germanium, should allow faster, less power-sapping electronic devices. In the short term it could be used to make “wearable” solar cells to power phones or tablets.

The innovation has been announced by Professor Justin Holmes, a scientific investigator at the Advanced Materials and BioEngineering Research Centre and professor of nanochemistry at University College Cork.

The tin-germanium mixture has been used by Holmes and his team to make tiny electricity-conducting wires, called nanowires. These control the electrical flow in devices, as silicon does, but use less power.

Low-power electronics could mean that mobile phones need to be charged less often, Holmes said, and could open the way for solar-powered mobile phones.

“Improved power efficiency means increased battery life for mobile devices, which ultimately leads to lower greenhouse gas emissions,” he said. “The charging of mobile electronic devices currently accounts for 15% of all household electricity consumption.”

This research has been funded jointly by Science Foundation Ireland, a government body that uses public money to support research, and IQE, a British company that produces materials for mobile phones and other electronic products.
The creation could challenge the dominance of silicon chips. Silicon, a component of sand, is a cheap and abundant material. Because of its ubiquity and its power to control electricity, it was used in the first chip made at the Texas Instruments lab in 1958.
As computers’ processing speeds have increased, manufacturers have packed more transistors onto every chip. Intel’s 4004 chip, made in 1971, had 2,300 transistors, while a chip the company makes now has 7.2bn.

The technical problem with having billions of transistors in a single silicon switch is that the amount of heat generated has shortened battery life and can lead to overheating.

This prompted scientists including Holmes to look at different materials that could be used in chips. IQE said it hopes the Irish-made material will make silicon chips faster and reduce their power consumption.

“The ability to increase the speed and number of devices on a chip by reducing size is coming to an end. Novel ideas such as nanowires will allow the microelectronics revolution to continue,” it said.

 This article was first published by The Sunday Times (Irish edition) on 21/08/2016.  Click here to view.



Male & Female brains not different; why sleeping naked is good for health; anti-cancer nanorobots built; Hawking proved right about ‘Black Holes’


This interview was first broadcast on The Morning Show with Declan Meehan on East Coast FM (17-08-2016)


Tiny nano robots have been built from DNA which can carry anti-cancer drugs to where they are most needed inside a cancer tumour (Picture source: http://www.meddeviceonline.com)

Contrary to popular belief, Men are not from Mars and women from Venus, at least when it comes to the human brain. Neuroscientists believe that the differences between male and female brains are the result of what society expects each sex to be good at.

If you need naked with your partner every night, scientists have good news for you. This practice boosts the immune system, reduces infections, and helps establish natural body rhythms, and all of his is beneficial to our health.

Scientists in Montreal have unleashed tiny nano-robots, made up largely of DNA material, which can carry drugs to where they needed inside cancer tumours. This provides a potentially more effective cancer treatment than existing therapies, which can kill healthy cells, and can’t get access inside tumours.

Black Holes are swirling cosmic whirlpools, with enormous gravitational power that suck everything, including light, and destroys it. However, Stephen Hawking predicted that not quite everything would be destroyed and some radiation, ‘Hawking radiation’, would escape. A new experiment confirms Hawking’s theory.

Scientists help insurers develop ‘death clock’; loneliness is bad for health; biological computers; dinosaur extinction story updated;

Listen to discussion on The Morning Show with Declan Meehan (21.04.16)


Loneliness puts people at higher risk from stroke, heart disease and many other illnesses (Credit: http://www.ucsf.edu)

Loneliness has been linked to a 30% increased risk of stroke. This is more evidence that being lonely, at whatever age, puts the person at higher risk of ill health.

Insurance companies, with the help of scientists,  are working on developing a ‘death clock’ which will better predict when their customers, with life insurance, will die.

Biological computers are on the way, made from genes, proteins and other living tissue, which may be used in future to diagnose and treat disease from inside the body.

The extinction of dinosaurs was prompted by the collision of a 10km wide piece of space rock with the Earth 66 million years ago, but, new evidence suggests that before the impact, the dinosaurs had already seen their best days.


DNA-based computers set to replace silicon

Click above to listen to discussion with Keelin Shanley on Today with Sean O’Rourke, broadcast on RTE Radio 1 on 27th August 2015

DNA Computers

DNA-based computers have already been built and they look set to replace silicon computers in coming years (Source: http://www.news.discovery.com

We love our electronics, or most of us do, and every year or two, when we go to buy a new phone, computer or laptop we all expect to buy a faster, more intelligent device.

The microchips inside our electronics are ‘the brain’ of the device. They  are currently made up of silicon, an abundant material found in sand.

However, some time soon, perhaps very soon, silicon-based chips will no longer be able to provide devices with the extra speed and functionality that buyers demand.

The big question is, if electronic devices are not based on silicon, as they have been for decades now, what will they be based on?

It might come as a surprise to some to learn that DNA, the genetic material inside every human cell, is a leading contender to fill silicon’s shoes.


In a way, it makes perfect sense to use DNA for computers.  DNA is brilliant at storing and processing information, and is made up of  a simple, reliable code.

Yet the idea of using DNA in computers didn’t emerge until as late as 1994.

That was when Leonard Adleman, of the University of Southern California showed that DNA could solve a well-known mathematical problem.

The problem was a variation of what mathematicians call the ‘directed Hamilton Path problem. In English that translates to ‘the travelling salesman problem’.

In brief, the problem is to find the shortest route between a number of cities going through each city just once.

The problem gets more difficult the more cities are added to the problem. Adelman solved the problem,using , for seven cities in the US.

Thing is, it is not a hugely difficult problem, and a clever enough human using paper and pencil could probably work it out faster than Adelman’s DNA computer.

The importance of what Adelman did was to show that DNA could be used to solve computational problems – what we might call a proof of concept today.

He used synthesised DNA strands to represent each one of the seven cities and other strands were made for each of the possible flight paths between the cities.

He then performed a number of experimental techniques on the DNA strands to get the single answer that he wanted. Like putting a jigsaw puzzle together.

It was slow, but he showed it could be done.

The question now was, what else can we do with DNA?

Purified Silicon

Purified silicon, pictured here, is sourced primarily from sand and is an abundant element in the Earth’s crust (Source: Wikipedia)


The most important element is silicon, pictured here on the right, which is the material used to make the microchip; the brain of our phones, pads and laptops if you like.

The first silicon chip was made in 1968, and it became the material of choice for the emerging computer industry in the years and decades that followed.

It is an abundant material, found in sand, and in rocks like granite and quartzite, and this abundance means it is cheap, and easy to find, all over the world.

It is also a semiconductor, which means it conducts electricity, although badly. It is halfway between a conductor, such as metal, and an insulator, such as rubber.

It would be very hard to control electricity, in terms of switching transistors on and off, using a material that conducted electricity or block its flow entirely.

This semiconducting property makes it easier to control the flow of electricity in a silicon microchip, which is crucial to success of the microchip technology.

Other materials

Aside from silicon, there are plastics, which make up a lot of the weight of many devices and laptops, in the body, circuit boards, wiring, insulation and fans.

These are plastics like polystyrene, a common one, are made up of carbon and hydrogen, two of the most common elements in nature.

There are metals, but usually light metals, such as aluminium, which is popular because it is light, and strong and has a sleek, modern appearance.

Aluminium comes from bauxite mining, and a lot of energy is spent in extracting the ore aluminium from the bauxite rock in big producer nations like Australia.

There is some steel for structural support and for things like screws, and copper is still used in wiring on circuit boards and to connect electrical parts.

The battery is key, of course, and typically it is a lithium-iron battery these days. These batteries also have cobalt, oxygen and carbon.

Rare earths

There are also small elements of rare materials, or rare earths such as gold or platinum, or neodymium, which is used for tiny magnets inside tiny motors.

electronic devices, including iPhones and other devices. This,has proved controversial as the process that extracts those rare earths from the ground is environmentally risky, some believe.

Minerals such as neodymium are used in magnets inside the iPhones to make speakers vibrate and create sound.

Europium is a material that creates a bright red colour on an iPhone screen and Cerium is used by workers to polish phones as the go along the assembly line.

The iPhone wouldn’t work without the various rare earths contained in it. Ninety per cent of the rare earths are mined in China, where environmental rules are slacker.


There is a human price to be paid – elsewhere – for our shiny, fast, new devices.

For example, a centre of rare earth mining is a place called Baotou, in Inner Mongolia. The town has dense smog, and a radioactive ‘tailings’ lake west of the city, where rare earth processors dump their waste, described as “an apocalyptic sight”.

Radioactive waste has seeped into the ground, plants won’t grow, animals are sick, and people report their teeth falling out, and their hair turning white.

The people that risk their lives mining for  the rare materials that need to make make the electronics we love, usually live far away from Europe or North America.

China is a major centre for such mining, and Australia is significant too.

DNA is ‘clean’ 

When scientists built a computing running on DNA in Israel in 2003, it contained none of the silicon, metals or rare earths used in our devices today.

It could also perform 330 trillion operations per second, which was a staggering 100,000 times faster than silicon-based personal computers.

A DNA computer would be much ‘greener’ and more in keeping with our 21st century ideas of sustainability and reducing the carbon footprint.

DNA computers don’t need much energy to work. It is just a case of putting DNA molecules into the right chemical soup, and controlling what happens next.

If built correctly, and that is where the technical challenge likes, a DNA computer will sustain itself on less than one millionth of the energy used in silicon chip technology.


There have been a few important milestones since the pioneering work of Adelman in California opened the door to DNA computers back in 1994.

A lot of the progress has happened in the Weizmann Institute for Science in Israel, a world class institute in a country even smaller than our own.

Between 2002 and 2004, scientists there produced a computer based on DNA and other biological materials, rather than silicon.

They came up with a DNA computer which was, they said, capable of diagnosing cancer activity inside a cell, and releasing an anti-cancer drug after diagnosis.

More recently in 2013, researcher stored a JPEG photo, the text of a set of Shakespearean sonnets and an audio file of Martin Luther King’s famous ‘I have a dream’ speech using DNA.

This proved that DNA computers were very good at storing data, which is something that DNA has evolved to do over millions of years in the natural world.

DNA computers are on the way that will be far better at storing data than existing computers which use cumbersome magnetic tape or hard drive storage systems.

The reason is simple. DNA is a very dense, highly coiled molecule that can be packed tightly into a small space.

It lives in nature inside tiny cells. These cells are only visible under a microscope, yet the DNA from one cell would stretch to 2 metres long if uncoiled and pulled straight.

The information stored in DNA also can be stored safely for a long time. We know this because DNA from extinct creatures, like the Mammoth, has lasted 60,000 years or more when preserved in ice, in dark, cold and dry conditions.

One of the few advantages of our Irish weather is that it is makes it an attractive place for high technology companies to base their data store centres here.

It was a factor in the announcement by Google last week that it was to locate a second data centre in Dublin.

Silicon Chip (Source www.tested.com)

Many industry experts believe the days of the silicon chip, like this one, are numbered, and some believe DNA will replace it as the material of choice in our future devices (Source: http://www.tested.com)

DNA chip

A DNA computer chip – if we call it that- will have to be far more powerful than existing silicon chips to establish itself as a new technology.

This will be ‘disruptive’,and a lot of money is invested in manufacturing plants like Intel in Leixlip, which have been set up and fitted out to make silicon chips.

But, regardless of the level of investment, and Intel have invested something like $12.5 billion in their Leixlip plant since 1990, silicon’s days are numbered.

In 1965, Gordon Moore, one of the founders of Intel, came up with a law governing the production of faster and faster computing speeds, which has proved accurate.

He said that the number of transistors on an ‘integrated circuit’ – the name given to chips before silicon became the material of choice – would double every two years.

This doubling has continued every two years since 1965, but engineers say that they are fast reaching the point where they have exhausted silicon transistor capacity.

The need for something to replace silicon is becoming urgent, and this is why a recent breakthrough in DNA computing in the UK is especially timely.

Scientists at the University of East Anglia have just announced they have found a watch to change the structure of DNA – twice – using a harmless common material.

The material is called EDTA and it is found in shampoo, soaps and toiletries to keep their colour, texture and fragrance intact.

The scientists used EDTA to change DNA to another structure, and the, after changing it, to change it back into its original structure again.

In silicon, the transistors switch between ‘on’ and ‘off’ states and this provides the means of controlling the way that the silicon chip works.

Similarly, this breakthrough has shown, for first time, that scientists can now also switch DNA between two ‘states’ or forms.

The research was just published (17th August) in the journal Chemical Communications.

The fact that the structure of DNA can be changed twice means that it is possible to create DNA ‘logic gates’, like those which are used in silicon computers.

A logic gate, by the way,  is something that is capable of performing a logical operation based on more or more logical inputs, to produce a single logical output.


DNA computers can take us to a new level of computing which wasn’t possible with Silicon.

DNA computers, the size of teardrops, will be constructed in the future, using nanotechnology; will will be as powerful as the supercomputers of today.

This size will be important as we are entering an age when many things will be connected to the internet in our homes and offices, all talking to one another.

These devices will have artificial intelligence, and they will be capable of rapid processing of data, and making decisions to benefit mankind.

We come home, and some wearable device detects we are sweating, and the hot water is put on for a shower, while a cold drink is made in the kitchen.

We will have a lot of devices, and if they are based on DNA technology, we’ll need a lot of DNA, but that is no problem, as we can now make it ourselves.

There are no toxic materials required to synthesize DNA and it can provide us with the technology we crave, without something else paying for it with their ill health.

Invisible soldiers on the way; Cyber war, how real is the threat?; bottle feeding obesity link

America's Future Warriro will go beyond camouflage to become truly invisible. Nanotechnology in the fibers of the soldier's uniform will allow it to perfectly mirror the environment. Like a chameleon, this high-tech commando will take on the appearance of whatever he is standing against. Concept Photo by  Edit International. Copyright 2003.

The US army is aiming to create nano materials that will enable soldiers to virtually disappear against any background  [Concept Photo by Edit International]

Cyber terrorists, or hostile powers have featured in Hollywood films as being able to knock out air traffic control systems, power grids and financial centres, but how real is the threat?

Hiding from the enemy has always been important to military everywhere, but the US is set to take it to a new level with the development of uniforms that enable soldiers to virtually disappear against any background.

Breastfeeding up to six months, the evidences shows, reduces the rest of later obesity by about one quarter. We discuss

Click below to listen to a discussion on the topics above on The Morning Show with Declan Meehan on East Coast FM.

This was first broadcast on 7th May 2015

Quantum teleportation; self-healing metals; and the wonders of the eye

‘Beam me up Scotty’ becomes reality’; the rise of the self-repairing machines, and the eye; the most complex organ.

Click below to hear a discussion of these topics on The Morning Show with Declan Meehan – broadcast on East Coast FM on 25th September 2014

The ‘Nano’ Tester: Professor Stefano Sanvito, CRANN

Professor Stefano Sanvito, Deputy Director of CRANN, pictured here in the Long Library at TCD

Professor Stefano Sanvito, Deputy Director of CRANN, pictured here in the Long Library at TCD [Credit: CRANN]

Lighter, stronger, more fuel-efficient airplanes; more powerful, better targeted drugs, and paper thin high-definition televisions – it has all become possible as scientists became adept at the manipulation of tiny ‘nano’ particles. The possibilities from nanotechnology are exciting, but it crucial that proper safety tests are in place. Professor Stefano Sanvito, Deputy Director of CRANN at TCD, wants Ireland to become a ‘hub’ for such nano testing.

Stefano, as the name suggests, is Italian, and graduated in physics from the University of Milan ‘about 15 years ago’. He was interested in science from when he was ‘very small’, and he has pedigree for the field. His father, who is now retired, was an engineer who worked in the sewing machine industry, while his grandfather worked in R&D for ‘big pharma’.

His interests, while at secondary school, were not only in the sciences, as he also developed a liking for philosophy. In fact, his first choice of career was to become a writer, and towards that end, he applied to study at the renowned Scuola Normale Superiore di Pisa. The standards for entry to the Scuola were, and are, high, with only about 6% of applicants gaining entry. Stefano didn’t make it, and then focused on his other big interest – physics.

He gained entry to the University of Milan to study physics and maths, but that was easy part. Though some 500 fellow students were also admitted at the same time, only about 50 of them would later pass the exams at the end of the year and make it into second year. It was a brutal ‘sink or swim’ test for the mainly teenage group of students. Stefano recalled that there was no help provided, no structure for students, and the pressure was immense.

He found the going extremely tough, especially the lab work, yet he passed his exams. That first year in college wasn’t at all enjoyable, as the work needed to get into the top 10% of the class was huge, while most of the physics course was of the ‘old school’ variety. It wasn’t until 3rd year, when began studying modern physics, and areas such as quantum mechanics, that things began to get interesting for him, and his talent found expression.

He doesn’t recall any event in particular that triggered a flourishing of interest in science at any stage of his life, but he did have a mentor, while at university that was a big influence on him. This was his fourth year supervisor, who oversaw his final year undergraduate project. He was a difficult man to deal with on a personal level, recalled Stefano, but he was a stimulating character and a talented high-energy scientist. Certainly, he might well have been a difficult colleague, said Stefano, but as a supervisor and scientist, he was fantastic. He also gathered around him many big names of science, which made things even better.

The final university year was an enjoyable experience thanks to his colourful, difficult supervisor. Then, with his degree in his pocket, he looked around for his next option. He wanted to continue in research, and do a PhD, but he wanted to do it outside Italy, and preferably in an English-speaking country. He chose to go to the UK, where he secured support from the British Ministry of Defence (MOD) to study ‘giant magneto-resistance’.

Military matters

The force called giant magneto-resistance was discovered in 1988 – independently, yet at the same time – by research groups led by Albert Fert and Peter Grunberg. The two men were awarded the Nobel Prize for Physics in 2007 for the finding. The term describes how the resistance of certain materials to electrical current drops dramatically as a magnetic field is applied. The word ‘giant’ was tagged on to ‘magneto-resistance’ part because the scientists wanted to describe something that was a much larger effect on current than anything that had ever been seen in metals. This giant magneto force has since been used to improve the storage capacity of computer disks, car sensors, and many other devices.

The MOD wanted to use giant magneto-resistance forces to develop a new ‘solid state’ compass, and that’s why they funded Stefano’s PhD into this area. A solid state compass is a small compass found now in clocks or mobile phones that are typically built using two or three ‘magnetic field sensors’ that pick up the Earth’s magnetic readings, and send that data to a microprocessor. They can provide a very accurate positioning method.

Stefano’s PhD was awarded by the University of Lancaster, but he spent two out of three years working towards his doctorate based at an MOD site near Malvern, Worcestershire, a town of about 28,000 people located approximately halfway between Birmingham and Bristol. This site was home to the Royal Signals and Radar Establishment, the group that had famously developed the radar, which helped the RAF win its life or death struggle with the Luftwaffe in the 1940 ‘Battle of Britain’. The group had moved from the south of England to Malvern in 1942, where they worked under the protection of the 600-metre tall Malvern Hills. The British had, by 1942, become concerned about the threat of a ballistic missile attack on its military bases in southern England from Nazi- Occupied Belgium.

At Malvern, Stefano did ‘atomistic simulations’ for ‘sandwiches’ of different materials. In other words he analysed how magnetic affected current running through various materials. It was possible to get a different current in a material when the magnetic ‘configuration’ changed. This Nobel Prize in Physics in 2007 was awarded to Fert and Grunburg for being the first to demonstrate that an electrical current could be hugely changed by changing the magnetism of a magnet. This knowledge was used to build improved computer disk drives, and today every computer or disk drive is based on this principle, in a market worth $ 7 billion. It’s an example, said Stefano, of how basic research can lead to economic gains.

American dream

After his stint in Britain, Stefano was very keen to follow a long held dream to work as a scientist in the USA. He felt the best time to do that was after the PhD, and as a post-doctoral researcher. “There is excellent science in Europe, but there is a ‘can do’ attitude in the US that has no match anywhere in the world – maybe Israel – and I wanted to see that in action,” said Stefano. He applied and was accepted to do research at the ‘top 10’ listed University of Southern California Santa Barbara, and found it “the absolute best place”.

He found the scientific culture to be fantastic, the climate was superb, the mountains and sea were nearby, he was mingling with Nobel Prize winners – USC Santa Barbara had three winners in his few short years there alone – and his office was 100 metres from the beach. He spent two and a half years living out his California dream and while in the lab he was working on putting magnetic impurities into semi-conductors and seeing what happened.

Ireland calling

California would be hard to top, but his next move was crucial, as, after the post-doc Stefano was seeking his first staff job as a scientist. He researched the options, and saw an ad for an opportunity to work at the CRANN Institute at TCD in Dublin where he knew a renowned researcher was based – Professor Michael Coey. The package was attractive in terms of equipment, funding and personnel resources. The couple were keen too, to return to Europe, any part of Europe, in order to raise their family. Ireland seemed a good bet.

In 2006, Stefano and his wife, and two boys moved to Dublin, where he was appointed as Associate Professor in Physics, later becoming Deputy Director of CRANN in 2009. He began working closely with Professor Coey, but set up his own research group. Stefano’s group was focused on investigating the properties of nano materials. More and more companies were making nano-devices, and using nano-materials, and he developed a testing service, based on unique mathematical algorithms built into simulation software programmes, which are available to download, for companies located all over the globe.

“I have to admit that I moved to Ireland because of serpendity,” said Stefano, who is now well settled here with his family. “I wanted to move back to Europe, and my position at Trinity was the first one I could secure. However, I probably wouldn’t have moved to any other place in Ireland except Trinity because of the reputation. A second factor to steer my decision was SFI [Science Foundation Ireland]. SFI essentially started those days and it was clear that they could provide great opportunities for young scientists. I am afraid that this is not the case any longer,” added Stefano.

Ireland had a good reputation in science when Stefano arrived here seven years ago, but he said hard won reputations can be easily lost. “What really differentiate good and bad places academically is the reputation. Of course other things matter, but the reputation of a place, or your colleagues, of the commitment of the state and the society is what makes a University attractive. It takes ages to construct a reputation, and it takes very little to lose it.”


As for the future, Stefano belives that nano researchers will become increasingly able to systematically predict new materials and new material complexes ahead of experiments. Nano science will not stop there, of course, and be believes the next stage after that will involve researchers making predictions about materials with applications in mind. For example, scientists might predict a new material – that does not yet exist – for making magnets that can be used in electrical moters. Then people will make it in the laboratory. These new materials will be predicted and designed using computers, and new software.

This means an age of vastly superior new materials – designed exactly for purpose – lies ahead of us. Tehse new materials will need to be tested before they can be applied in the real world. CRANN is already known for its ability to simulate tests on nanomaterials, and Stefano wants to extend that expertise to a range of new nanomaterials coming online. This can help manufacturers by proving whether certain nano materials are really up to scratch, whether they will work in nano-devices, while also assuring the public about ‘nano safety’.

First published in the March 2013 edition of Science Spin.

‘Self assembled’ CRANN silicon chips are cheaper, and more powerful

A team of researchers at TCD and UCC led by Professor Mick Morris have coaxed atoms to ‘self assemble’ into a microchip, as seen in this image (Credit: Mick Morris).

The public have an insatiable appetite for better laptops, and other electronic devices, but they don’t want to pay more, and ideally they want to pay less than what they paid for their last machine.

This means that the manufacturers of computer chips, such as Intel, and the producers of laptops such as Dell are facing a dilemma.

Up to now microchips that are better than before, could only be produced  using expensive engineering tools and methods.

This naturally creates upward pressure on the cost of making microchips, which, in turn, increases the upward pressure on the cost of laptops.

The manufacturers don’t want costs to start to climb for their products. They want the opposite, and to break into new markets as a result.

So, what to do?

Professor Mick Morris, a nanotechnology researcher based at the Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) at TCD and UCC, may have an answer.

Prof Morris, and his team have just shown that it is possible to manufacture silicon microchips using ‘self assembly’ methods. This involves the use of chemistry to prod groups of atoms to assemble themselves into the desired way.

The use of self-assembly to make microchips is far, far cheaper than using expensive engineering tools. There is no cutting, or other tool work required, and small groups of silicon atoms do all the work for themselves.

This provides a potential way to build future microchips with a lot more power, while also reducing manufacturing costs.

LISTEN: Interview with Mick Morris

This interview was broadcast on Science Spinning on 103.2 Dublin City FM on 17-05-2012

Geophysics, Nanotechnology, Irish Stone

Geophysics is helping scientists to better predict when volcanoes, such as Mt Etna in Sicily here, are likely to erupt [Credit: Nina Silitch

Science Spinning: ‘The Show with an Irish Spin on Science’, Presented and Produced by Seán Duke

Broadcast on Dublin City FM, 03/02/2011

Geophysics, Nanotechnology, Irish Stone

To contact the show email: sciencespinning@dublincityfm.ie